Search results

Search for "scanning probe microscopy (SPM)" in Full Text gives 36 result(s) in Beilstein Journal of Nanotechnology.

Design, fabrication, and characterization of kinetic-inductive force sensors for scanning probe applications

  • August K. Roos,
  • Ermes Scarano,
  • Elisabet K. Arvidsson,
  • Erik Holmgren and
  • David B. Haviland

Beilstein J. Nanotechnol. 2024, 15, 242–255, doi:10.3762/bjnano.15.23

Graphical Abstract
  • with a mask consisting of a 190 nm thick layer of Cr and PMMA. After the release, we strip the PMMA and Cr layers, while taking care to not break the cantilevers. The difficulties associated with using KOH lead us to prefer the dry-etch described above in step (h). Tip deposition In scanning probe
  • microscopy (SPM), the tip plays a fundamental role in the achievable lateral resolution of the image. The focused electron-beam induced deposition (FEBID) [34] technique has been adapted to fabricate tips for SPM, for example, to enhance commercial platinum–iridium alloy (Pt-Ir)-coated conductive tips [35
PDF
Album
Full Research Paper
Published 15 Feb 2024

unDrift: A versatile software for fast offline SPM image drift correction

  • Tobias Dickbreder,
  • Franziska Sabath,
  • Lukas Höltkemeier,
  • Ralf Bechstein and
  • Angelika Kühnle

Beilstein J. Nanotechnol. 2023, 14, 1225–1237, doi:10.3762/bjnano.14.101

Graphical Abstract
  • Tobias Dickbreder Franziska Sabath Lukas Holtkemeier Ralf Bechstein Angelika Kuhnle Physical Chemistry I, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany 10.3762/bjnano.14.101 Abstract Scanning probe microscopy (SPM) techniques are widely used to study the structure and
  • force microscopy; calibration; drift correction; image correlation functions; periodic structures; scanning probe microscopy; Introduction In science and technology, scanning probe microscopy (SPM) techniques are widely used to study the structure and properties of surfaces and interfaces from the
PDF
Album
Supp Info
Full Research Paper
Published 28 Dec 2023

Cross-sectional Kelvin probe force microscopy on III–V epitaxial multilayer stacks: challenges and perspectives

  • Mattia da Lisca,
  • José Alvarez,
  • James P. Connolly,
  • Nicolas Vaissiere,
  • Karim Mekhazni,
  • Jean Decobert and
  • Jean-Paul Kleider

Beilstein J. Nanotechnol. 2023, 14, 725–737, doi:10.3762/bjnano.14.59

Graphical Abstract
  • measurements based on scanning probe microscopy (SPM) allow for the analysis of two-dimensional (2D) features at the surface and along a physical cross section of nanoscale semiconductor structures. Among the wide variety of SPM techniques available [3], Kelvin probe force microscopy (KPFM) is an application
PDF
Album
Full Research Paper
Published 14 Jun 2023

The role of convolutional neural networks in scanning probe microscopy: a review

  • Ido Azuri,
  • Irit Rosenhek-Goldian,
  • Neta Regev-Rudzki,
  • Georg Fantner and
  • Sidney R. Cohen

Beilstein J. Nanotechnol. 2021, 12, 878–901, doi:10.3762/bjnano.12.66

Graphical Abstract
  • , convolutional neural networks, and how it is transforming the acquisition and analysis of scanning probe data. Keywords: atomic force microscopy (AFM); deep learning; machine learning; neural networks; scanning probe microscopy (SPM); Review Introduction: traditional machine learning vs deep learning Machine
  • the excitement surrounding them. In this work, after introducing some of the basic structure and functionality of NNs, we concentrate on the applications of deep learning, primarily CNN, to scanning probe microscopy (SPM). The combination of improved scanning speeds, which will enable acquisition of
  • from general microscopy to scanning probe microscopy (SPM), which provides unique opportunities to exploit the power of CNNs. CNNs applied to SPM Whereas CNNs have proven themselves extremely useful for a variety of microscopic images, scanning probe microscopy (SPM) images have qualities that make the
PDF
Album
Review
Published 13 Aug 2021

Influence of electrospray deposition on C60 molecular assemblies

  • Antoine Hinaut,
  • Sebastian Scherb,
  • Sara Freund,
  • Zhao Liu,
  • Thilo Glatzel and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2021, 12, 552–558, doi:10.3762/bjnano.12.45

Graphical Abstract
  • the sample. Nevertheless, the contamination from solvent introduction can be reduced down to conditions compatible with high-resolution scanning probe microscopy (SPM) techniques [10][12]. Buckminsterfullerene C60, scheme in Figure 1b, is among the most extensively studied molecules in surface science
PDF
Album
Supp Info
Full Research Paper
Published 15 Jun 2021

Mapping of integrated PIN diodes with a 3D architecture by scanning microwave impedance microscopy and dynamic spectroscopy

  • Rosine Coq Germanicus,
  • Peter De Wolf,
  • Florent Lallemand,
  • Catherine Bunel,
  • Serge Bardy,
  • Hugues Murray and
  • Ulrike Lüders

Beilstein J. Nanotechnol. 2020, 11, 1764–1775, doi:10.3762/bjnano.11.159

Graphical Abstract
  • ; integrated PIN diode; nanoprobing; scanning probe microscopy (SPM); scanning microwave impedance microscopy (sMIM); spectroscopy; Introduction In “front end of line” (FEOL) processing, the control, detection, and quantification of the effective 2D distributions of active dopants in semiconductors are
  • crucial to optimize and increase the device integration. In order to map the electrical properties of microelectronic materials with a high spatial resolution, scanning probe microscopy (SPM), based on atomic force microscopy (AFM), offers several modes based on the control of electrical conduction and on
PDF
Album
Supp Info
Full Research Paper
Published 23 Nov 2020

Revealing the local crystallinity of single silicon core–shell nanowires using tip-enhanced Raman spectroscopy

  • Marius van den Berg,
  • Ardeshir Moeinian,
  • Arne Kobald,
  • Yu-Ting Chen,
  • Anke Horneber,
  • Steffen Strehle,
  • Alfred J. Meixner and
  • Dai Zhang

Beilstein J. Nanotechnol. 2020, 11, 1147–1156, doi:10.3762/bjnano.11.99

Graphical Abstract
  • greatly increased leading to a strong local near field confined at the tip apex. This gives rise to the enhanced sensitivity of tip-enhanced Raman spectroscopy (TERS). TERS combined with scanning probe microscopy (SPM) also allows for the collection of correlated topography and optical images [42][43
PDF
Album
Supp Info
Full Research Paper
Published 31 Jul 2020

Implementation of data-cube pump–probe KPFM on organic solar cells

  • Benjamin Grévin,
  • Olivier Bardagot and
  • Renaud Demadrille

Beilstein J. Nanotechnol. 2020, 11, 323–337, doi:10.3762/bjnano.11.24

Graphical Abstract
  • programmable dual channel AWG (Keysight 33622A), which was synchronized with the scanning probe microscopy (SPM) unit by its external trigger input. The pulse sequences were programmed using the Keysight BenchLink Waveform Builder Pro software. Basically, the pulses consisted in a series of dual waveforms
PDF
Album
Supp Info
Full Research Paper
Published 12 Feb 2020

Integration of sharp silicon nitride tips into high-speed SU8 cantilevers in a batch fabrication process

  • Nahid Hosseini,
  • Matthias Neuenschwander,
  • Oliver Peric,
  • Santiago H. Andany,
  • Jonathan D. Adams and
  • Georg E. Fantner

Beilstein J. Nanotechnol. 2019, 10, 2357–2363, doi:10.3762/bjnano.10.226

Graphical Abstract
  • any photo-processable polymer cantilever. Keywords: Atomic force microscopy (AFM); durability; imaging speed; polymer cantilever; silicon nitride tip; Introduction Atomic force microscopy (AFM) cantilevers have been developed for numerous applications since the invention of scanning probe microscopy
  • (SPM) [1]. Quality and accuracy of an AFM image strongly depend on the tip geometry since the image topography is the convolution of the surface topography and the cantilever tip geometry [2]. More precisely, the resulting images suffer from the effect of dilation [3]. AFM images with tip artefacts are
PDF
Album
Full Research Paper
Published 29 Nov 2019

Subsurface imaging of flexible circuits via contact resonance atomic force microscopy

  • Wenting Wang,
  • Chengfu Ma,
  • Yuhang Chen,
  • Lei Zheng,
  • Huarong Liu and
  • Jiaru Chu

Beilstein J. Nanotechnol. 2019, 10, 1636–1647, doi:10.3762/bjnano.10.159

Graphical Abstract
  • and on the other hand the resolution is quite limited. Cross-sectional approaches can provide through-depth information, yet they are intrinsically destructive and require complicated sample processing. To meet such challenges, noninvasive subsurface imaging based on scanning probe microscopy (SPM
PDF
Album
Full Research Paper
Published 07 Aug 2019

Comparing a porphyrin- and a coumarin-based dye adsorbed on NiO(001)

  • Sara Freund,
  • Antoine Hinaut,
  • Nathalie Marinakis,
  • Edwin C. Constable,
  • Ernst Meyer,
  • Catherine E. Housecroft and
  • Thilo Glatzel

Beilstein J. Nanotechnol. 2019, 10, 874–881, doi:10.3762/bjnano.10.88

Graphical Abstract
  • semiconductor TiO2 has become one of the most extensively studied metal oxides, especially in the context of scanning probe microscopy (SPM) [1]. The working principle of an n-type DSSC, which is shown in Figure 1a, relies on the functionalization of TiO2 surfaces with dye molecules enabling the absorption of
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2019

Scanning probe microscopy for energy-related materials

  • Rüdiger Berger,
  • Benjamin Grévin,
  • Philippe Leclère and
  • Yi Zhang

Beilstein J. Nanotechnol. 2019, 10, 132–134, doi:10.3762/bjnano.10.12

Graphical Abstract
  • interfaces is therefore essential. Furthermore, these interface phenomena are strongly linked to material properties such as grain size, roughness, mechanical properties and work function. In an attempt to address the diversity of phenomena on the nanoscale, scanning probe microscopy (SPM) methods play an
PDF
Editorial
Published 10 Jan 2019

Nanoscale electrochemical response of lithium-ion cathodes: a combined study using C-AFM and SIMS

  • Jonathan Op de Beeck,
  • Nouha Labyedh,
  • Alfonso Sepúlveda,
  • Valentina Spampinato,
  • Alexis Franquet,
  • Thierry Conard,
  • Philippe M. Vereecken,
  • Wilfried Vandervorst and
  • Umberto Celano

Beilstein J. Nanotechnol. 2018, 9, 1623–1628, doi:10.3762/bjnano.9.154

Graphical Abstract
  • formed. For instance, Figure 1b shows the topography and current distribution map when performing such measurements in the case of the electrodeposited LMO. This basic concept was extended with the development of various scanning probe microscopy (SPM) techniques [8][9][10][11][12] dedicated to probe
PDF
Album
Supp Info
Letter
Published 04 Jun 2018

Electrostatic force spectroscopy revealing the degree of reduction of individual graphene oxide sheets

  • Yue Shen,
  • Ying Wang,
  • Yuan Zhou,
  • Chunxi Hai,
  • Jun Hu and
  • Yi Zhang

Beilstein J. Nanotechnol. 2018, 9, 1146–1155, doi:10.3762/bjnano.9.106

Graphical Abstract
  • of rGO, scanning probe microscopy (SPM) has also been employed recently to study the reduction of GO sheets at the nanoscale. Conductive atomic force microscopy (CAFM) [15][16] can be used to verify the reduced nanostructures on GO sheets. However, because CAFM relies on contact with the sample, the
PDF
Album
Full Research Paper
Published 11 Apr 2018

Electro-optical interfacial effects on a graphene/π-conjugated organic semiconductor hybrid system

  • Karolline A. S. Araujo,
  • Luiz A. Cury,
  • Matheus J. S. Matos,
  • Thales F. D. Fernandes,
  • Luiz G. Cançado and
  • Bernardo R. A. Neves

Beilstein J. Nanotechnol. 2018, 9, 963–974, doi:10.3762/bjnano.9.90

Graphical Abstract
  • interfacial effects. Scanning probe microscopy (SPM) and Raman scattering experiments, along with first-principles calculations, reveal the presence of a highly ordered RA self-assembled monolayer atop graphene and graphite. The electro-optical characterization of the hybrid system discloses interfacial
PDF
Album
Supp Info
Full Research Paper
Published 23 Mar 2018

Anchoring of a dye precursor on NiO(001) studied by non-contact atomic force microscopy

  • Sara Freund,
  • Antoine Hinaut,
  • Nathalie Marinakis,
  • Edwin C. Constable,
  • Ernst Meyer,
  • Catherine E. Housecroft and
  • Thilo Glatzel

Beilstein J. Nanotechnol. 2018, 9, 242–249, doi:10.3762/bjnano.9.26

Graphical Abstract
  • probe microscopy (SPM) [5]. Through the adsorption of a large variety of dye molecules, the ability of sensitized TiO2 to absorb light can be triggered and tuned. Thus, the possibility of designing photoactive devices with anodes consisting of nanostructured and functionalized TiO2 leads to numerous
  • photovoltaics such as dye-sensitized solar cells (DSSCs) [1][2][3][4]. In the latter field, the wide band gap n-type semiconductor TiO2 has become one of the most common metal oxides for the design of classical n-type DSSCs, and is therefore a widely studied material, in particular in the field of scanning
PDF
Album
Supp Info
Full Research Paper
Published 23 Jan 2018

Nanotribological behavior of deep cryogenically treated martensitic stainless steel

  • Germán Prieto,
  • Konstantinos D. Bakoglidis,
  • Walter R. Tuckart and
  • Esteban Broitman

Beilstein J. Nanotechnol. 2017, 8, 1760–1768, doi:10.3762/bjnano.8.177

Graphical Abstract
  • implies a higher elastic shakedown limit of the material and a reduction of the friction coefficient. Figure 8 shows a scanning probe microscopy (SPM) image of a DCT specimen after a nanoscratch test, where the formation of the wear track can be clearly seen. Material pile-up is visible at both sides of
  • load and b) cumulative wear coefficient. Evolution of the relative average roughness after each test cycle. Evolution of the friction coefficient during the nanowear test. Scanning probe microscopy (SPM) image after 30 cycles of nanoscratch testing in a DCT specimen. The depth profiles below in Figure
PDF
Album
Full Research Paper
Published 25 Aug 2017

Triptycene-terminated thiolate and selenolate monolayers on Au(111)

  • Jinxuan Liu,
  • Martin Kind,
  • Björn Schüpbach,
  • Daniel Käfer,
  • Stefanie Winkler,
  • Wenhua Zhang,
  • Andreas Terfort and
  • Christof Wöll

Beilstein J. Nanotechnol. 2017, 8, 892–905, doi:10.3762/bjnano.8.91

Graphical Abstract
  • ]. Other methods with sufficient height resolutions (0.1 nm) are ellipsometry and scanning probe microscopy (SPM). To our knowledge, SPM methods have so far not been successfully used to determine the absolute thickness of organic self-assmbled monolayers, most likely due to difficulties with preparing a
PDF
Album
Supp Info
Full Research Paper
Published 20 Apr 2017

Relationships between chemical structure, mechanical properties and materials processing in nanopatterned organosilicate fins

  • Gheorghe Stan,
  • Richard S. Gates,
  • Qichi Hu,
  • Kevin Kjoller,
  • Craig Prater,
  • Kanwal Jit Singh,
  • Ebony Mays and
  • Sean W. King

Beilstein J. Nanotechnol. 2017, 8, 863–871, doi:10.3762/bjnano.8.88

Graphical Abstract
  • scanning probe microscopy (SPM) [15][16][17][18][19][20][21]). It is due to the non-existence of techniques to identify chemical structures with nanometer lateral (in-plane) resolution. Scatterometry and near-field optical microscopy (NSOM) techniques have allowed sub-wavelength features to be resolved [22
PDF
Album
Full Research Paper
Published 13 Apr 2017

Copper atomic-scale transistors

  • Fangqing Xie,
  • Maryna N. Kavalenka,
  • Moritz Röger,
  • Daniel Albrecht,
  • Hendrik Hölscher,
  • Jürgen Leuthold and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2017, 8, 530–538, doi:10.3762/bjnano.8.57

Graphical Abstract
  • copper atomic-scale point contacts have been fabricated as mechanically controllable break junctions (MCBJ) [42][43][44][45], by using scanning probe microscopy (SPM) with a conductive tip [46][47], or electrochemical techniques [24][25][26][48][49]. Copper is an interconnection material in ultra-large
PDF
Album
Full Research Paper
Published 01 Mar 2017

Rigid multipodal platforms for metal surfaces

  • Michal Valášek,
  • Marcin Lindner and
  • Marcel Mayor

Beilstein J. Nanotechnol. 2016, 7, 374–405, doi:10.3762/bjnano.7.34

Graphical Abstract
PDF
Album
Review
Published 08 Mar 2016

Large area scanning probe microscope in ultra-high vacuum demonstrated for electrostatic force measurements on high-voltage devices

  • Urs Gysin,
  • Thilo Glatzel,
  • Thomas Schmölzer,
  • Adolf Schöner,
  • Sergey Reshanov,
  • Holger Bartolf and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2015, 6, 2485–2497, doi:10.3762/bjnano.6.258

Graphical Abstract
  • voltage; Introduction Scanning probe microscopy (SPM) is nowadays an established technological approach for surface analysis in many different research fields. Applications can be found in areas of life science measuring the properties of cells in buffer solution, submolecular structure of single
PDF
Album
Full Research Paper
Published 28 Dec 2015

Virtual reality visual feedback for hand-controlled scanning probe microscopy manipulation of single molecules

  • Philipp Leinen,
  • Matthew F. B. Green,
  • Taner Esat,
  • Christian Wagner,
  • F. Stefan Tautz and
  • Ruslan Temirov

Beilstein J. Nanotechnol. 2015, 6, 2148–2153, doi:10.3762/bjnano.6.220

Graphical Abstract
  • .6.220 Abstract Controlled manipulation of single molecules is an important step towards the fabrication of single molecule devices and nanoscale molecular machines. Currently, scanning probe microscopy (SPM) is the only technique that facilitates direct imaging and manipulations of nanometer-sized
  • (PTCDA); scanning probe microscopy (SPM); scanning tunnelling microscopy (STM); single-molecule manipulation; virtual reality interface; Introduction The recently introduced scanning probe microscopy (SPM) technique of hand controlled manipulation (HCM) allows the operator of the SPM to manipulate
PDF
Album
Supp Info
Full Research Paper
Published 16 Nov 2015

Development of a novel nanoindentation technique by utilizing a dual-probe AFM system

  • Eyup Cinar,
  • Ferat Sahin and
  • Dalia Yablon

Beilstein J. Nanotechnol. 2015, 6, 2015–2027, doi:10.3762/bjnano.6.205

Graphical Abstract
  • nanoindentation is described that exhibits improved resolution and depth sensing. The approach is based on a multi-probe scanning probe microscopy (SPM) tool that utilizes tuning-fork based probes for both indentation and depth sensing. Unlike nanoindentation experiments performed with conventional AFM systems
  • nanoindentation. Zhao et al. present a nanoindentation device that is designed to operate inside an SEM chamber in order to perform in situ indentation tests of indium phosphide [14]. We report a novel approach using a multi-probe scanning probe microscopy (SPM) system with tuning-fork probe technology in an
PDF
Album
Full Research Paper
Published 12 Oct 2015

High sensitivity and high resolution element 3D analysis by a combined SIMS–SPM instrument

  • Yves Fleming and
  • Tom Wirtz

Beilstein J. Nanotechnol. 2015, 6, 1091–1099, doi:10.3762/bjnano.6.110

Graphical Abstract
  • spectrometry (SIMS) data was combined with topographical data from the scanning probe microscopy (SPM) module for five test structures in order to obtain accurate chemical 3D maps: a polystyrene/polyvinylpyrrolidone (PS/PVP) polymer blend, a nickel-based super-alloy, a titanium carbonitride-based cermet, a
  • of the TiCN cermet. Keywords: alloy; atomic force microscopy (AFM); correlative microscopy; differential sputtering; in situ; multimodal imaging; nano-cluster; polymer blend; secondary ion mass spectrometry (SIMS); scanning probe microscopy (SPM); SIMS artefacts; sputter-induced effects; sputter
  • the depth scale, which are more or less important. This then causes distortions in the reconstructed 3D maps of the sample. To achieve actual high-resolution SIMS 3D analyses without risking the artefacts mentioned above, we developed a scanning probe microscopy (SPM) module that we integrated into
PDF
Album
Supp Info
Full Research Paper
Published 30 Apr 2015
Other Beilstein-Institut Open Science Activities